Mold2, Molecular Descriptors from 2D Structures for Chemoinformatics and Toxicoinformatics

نویسندگان

  • Huixiao Hong
  • Qian Xie
  • Weigong Ge
  • Feng Qian
  • Hong Fang
  • Leming Shi
  • Zhenqiang Su
  • Roger Perkins
  • Weida Tong
چکیده

Research applications in chemoinformatics and toxicoinformatics increasingly use representations of molecules in the form of numerical descriptors that capture the structural characteristics and properties of molecules. These representations are useful for ADME/toxicity prediction, diversity analysis, library design, QSAR/QSPR, virtual screening, and other purposes. Molecular descriptors have ranged from relatively simple forms calculated from simple two-dimensional (2D) chemical structures to more complex forms representing three-dimensional (3D) chemical structures or complex molecular fingerprints consisting of numerous bit positions to represent specific chemical information. The Mold (2) software was developed to enable the rapid calculation of a large and diverse set of descriptors encoding two-dimensional chemical structure information. Comparative analysis of Mold (2) descriptors with those calculated by Cerius (2), Dragon, and Molconn-Z on several data sets using Shannon entropy analysis demonstrated that Mold (2) descriptors convey a similar amount of information. In addition, using the same classification method, slightly better models were generated using Mold (2) descriptors compared to those generated using descriptors from the compared commercial software packages. The low computing cost for Mold (2) makes it suitable not only for small data sets, such as in QSAR, but also for large databases in virtual screening. High reproducibility and reliability are expected because Mold (2) does not require 3D structures. Mold (2) is freely available to the public ( http://www.fda.gov/nctr/science/centers/toxicoinformatics/index.htm).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new software for fragment-based QSAR and its applications

Fragment-based methods are quite popular in 2D QSAR/QSPR studies. In the advanced versions of these approaches for developing highly predictive models, one have to generate a huge set of descriptors that in turn requires well-designed algorithms and high-quality parallelism. To overcome these problems we developed the software for tagged generation of fragmental descriptors. One of the most per...

متن کامل

PyDPI: Freely Available Python Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies

The rapidly increasing amount of publicly available data in biology and chemistry enables researchers to revisit interaction problems by systematic integration and analysis of heterogeneous data. Herein, we developed a comprehensive python package to emphasize the integration of chemoinformatics and bioinformatics into a molecular informatics platform for drug discovery. PyDPI (drug-protein int...

متن کامل

Quantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds

The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...

متن کامل

Assessment of "drug-likeness" of a small library of natural products using chemoinformatics

Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...

متن کامل

Maximum common subgraph isomorphism algorithms for the matching of chemical structures

The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 48 7  شماره 

صفحات  -

تاریخ انتشار 2008